AMRMG (Adaptive Mesh Refinement MultiGrid Code)

David Brown
Lisa Lowe
NC State University

Thanks to Dale Choi

Penn State Numerical Relativity Lunch Talk February 21, 2003

Motivation:

- AMR is needed to cover the short length scales of gravitational—wave sources ($\sim M$) and the long length scales of gravitational waves ($\sim 100M$).
- AMRMG will feed data into Hahndol, NASA Goddard's AMR evolution code.
- Goddard Numerical Relativity Group: John Baker, Joan Centrella, Dale Choi, Breno Imbiriba

What does AMR mean for an elliptic solver?

- Grid resolution is determined locally as a part of the solution process.
- Specify the maximum desired truncation error, code constructs the grid to meet this requirement.

AMRMG uses PARAMESH

- Paramesh uses block refinement of the grid.
- Each block contains a fixed number of cells.
- Blocks are refined by bisection (1 block becomes 8 blocks in 3-D, 2 blocks in 1-D)
- AMRMG uses cell centered data.

1-D Example:

5							
4							
3							
2							
1							

Multigrid Approach

- Solve the elliptic problem using a hierarchy of coarse and fine grids.
- The coarse grids are responsible for the long λ part of the solution.
- The fine grids are responsible for the short λ part of the solution.
- Approximate solutions at each refinement level are obtained by relaxation (smoothing).

1-D Example:

$$\frac{\partial^2 \phi}{\partial x^2} = \rho \Longrightarrow \frac{\phi_{j+1} - 2\phi_j + \phi_{j-1}}{\Delta x^2} = \rho_j$$

$$\Longrightarrow \phi_j^{\text{new}} = \frac{1}{2} (\phi_{j+1}^{\text{old}} + \phi_{j-1}^{\text{old}}) - \frac{\Delta x^2}{2} \rho_j$$

• Two choices for multigrid with AMR: relax across the entire computational domain or relax independently at each refinement level. AMRMG uses the second choice.

Nonlinear 2-Grid V-Cycle

Equation: $E(\cdot) = \rho$ $\{\}_2 = \text{fine grid}, \{\}_1 = \text{coarse grid}$ $\mathcal{R} = \text{restriction } 2 \to 1, \mathcal{P} = \text{prolongation } 1 \to 2$

- (1) Solve $E_2(\cdot) = \rho_2$: Guess a solution $\tilde{\phi}_2 = 0$ and relax to obtain an approximate solution ϕ_2 .
- (2) Compute the coarse grid source:

$$\rho_1 = \mathcal{R}(\rho_2 - \underbrace{E_2(\phi_2))}_{\dagger} + \underbrace{E_1(\mathcal{R}\phi_2)}_{\ddagger}$$

- † subtract off the short λ part of the source that the fine grid got right
- ‡ add back the long λ part of the source that was removed by the short λ subtraction
- (3) Solve $E_1(\cdot) = \rho_1$: Guess a solution $\tilde{\phi}_1 = \mathcal{R}\phi_2$ and relax to obtain an approximate solution ϕ_1 (or solve exactly for ϕ_1).
- (4) Solve $E_2(\cdot) = \rho_2$: Guess a solution

$$\tilde{\phi}_2 = \phi_2 + \mathcal{P}(-\underbrace{\mathcal{R}\phi_2}_{\dagger} + \underbrace{\phi_1}_{\ddagger})$$

- † subtract off the long λ part of ϕ_2
- ‡ add ϕ_1 , which contains primarily long λ information due to the construction of ρ_1
- (5) Relax to obtain an improved approximate solution ϕ_2 .

AMRMG is second order convergent

• Guard cells at coarse/fine interfaces must be filled to third order accuracy.

1-D Example:

Guard cell ϕ_g must have errors no worse than $\mathcal{O}(\Delta x^3)$ or the overall second order convergence of the code will be spoiled.

- Restriction and prolongation must be handled carefully:
 - \mathcal{R}, \mathcal{P} : linear interpolation $(\mathcal{O}(\Delta x^2) \text{ errors})$
 - \mathcal{R}, \mathcal{P} : cubic interpolation $(\mathcal{O}(\Delta x^4) \text{ errors})$
- Guard cell filling: Use \mathcal{R} and \mathcal{P}
- Step 2: $\rho_1 = \mathcal{R}(\rho_2 E_2(\phi_2)) + E_1(\mathcal{R}\phi_2)$
- Step 3: $\tilde{\phi}_1 = \mathcal{R}\phi_2$
- Step 4: $\tilde{\phi}_2 = \phi_2 + \mathcal{P}(-\mathcal{R}\phi_2 + \phi_1)$

FMR Convergence Test:

Error Comparison:

(Grid 4 \sim 33 K pts, Grid 5 \sim 262 K pts, Grid 3p2 \sim 11 K pts)

Error Control:

<re>_grid = norm of residual (E – rho) across the grid <rte>_grid = norm of relative truncation error across the grid <rte>_block = norm of relative truncation error across a block

Brill Waves

• Metric:

$$ds^{2} = \Psi^{4} \left[e^{2q} (d\rho^{2} + dz^{2}) + \rho^{2} d\phi^{2} \right]$$

- $q = a\rho^2 e^{-r^2}$ (Holz, Miller, Wakano, Wheeler)
- Extrinsic curvature: $K_{ij} = 0$
- Hamiltonian constraint:

$$\nabla^2 \Psi + \frac{1}{4} (q_{,\rho\rho} + q_{,zz}) \Psi = 0$$

• Tolerance: $\langle \text{rte} \rangle$ _block < 0.03

Brill Waves

Brill Waves

